

Introdução aos metamateriais eletromagnéticos

Prof. Dr. Gláucio Lima Siqueira

Informações gerais

- Contato
 - glaucio@cetuc.puc-rio.br
- Dia e horário do curso
 - Sextas-feiras, de 09h às 12h
 - Sala 3 do CETUC
- Avaliação
 - Lista de exercícios
 - Projeto final
- Referência Bibliográfica
 - ELE5322 21st Century Electromagnetics, Dr. Raymond C. Rumpt, UTEP, USA
 - http://emlab.utep.edu/ee5390em21.htm/
 PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Ementa (I)

- Parte 1 Eletrodinâmica em meios periódicos
 - Tópico 1 Revisão do eletromagnetismo clássico
 - Tópico 2 Modelos de Drude e Lorentz para condutores e dielétricos
 - Tópico 3 Propagação da onda eletromagnética em meios anisotrópicos e não lineares
 - Tópico 4 Teoria dos modos acoplados
 - Tópico 5 Teoria das estruturas periódicas
 - Tópico 6 Redes de difração
 - Tópico 7 Ressonância do modo guiado
 - Tópico 8 Homogeneização de estruturas periódicas

Ementa (II)

- Parte 2 Fenômeno e aplicações de metamateriais
 - Tópico 9 Teoria dos metamateriais
 - Tópico 10 Eletromagnetismo transformacional aplicado aos metamateriais
 - Tópico 11 Ondas de superfície
 - Tópico 12 Ondas lentas
 - Tópico 13 Linha de transmissão orientada à esquerda
 - Tópico 14 Aplicações de metamateriais

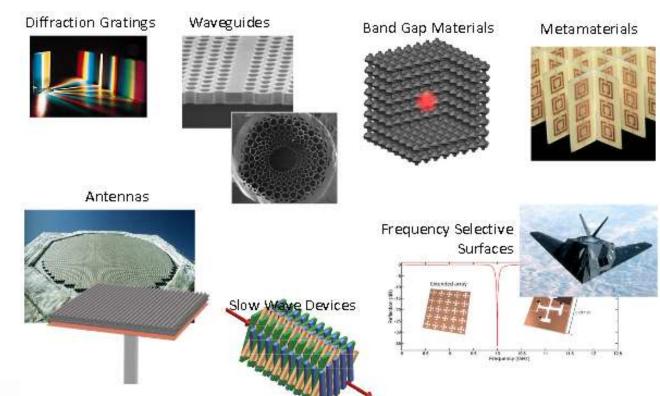
Tópico 5 Teoria das estruturas periódicas

- Dispositivos periódicos
- Descrição matemática
- Ondas eletromagnéticas em estruturas periódicas
- Bandas eletromagnéticas
- Contornos de isofrequência
- Exemplos de estruturas periódicas

Dispositivos periódicos

Dispositivos periódicos

 Pelo menos desde o século XIX que os "comportamentos estranhos" na propagação de ondas eletromagnéticas devido a estruturas periódicas é estudado



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

O que é uma estrutura periódica?

- Materiais naturais são periódicos na escala atômica
- Metamateriais são periódicos numa escala muito maior, mas menor que λ
- A matemática para descrever como as coisas são periódicas é a mesma tanto para escala atômica como para escalas mais largas

Periodicidade em escala atômica

Periodicidade em larga escala



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

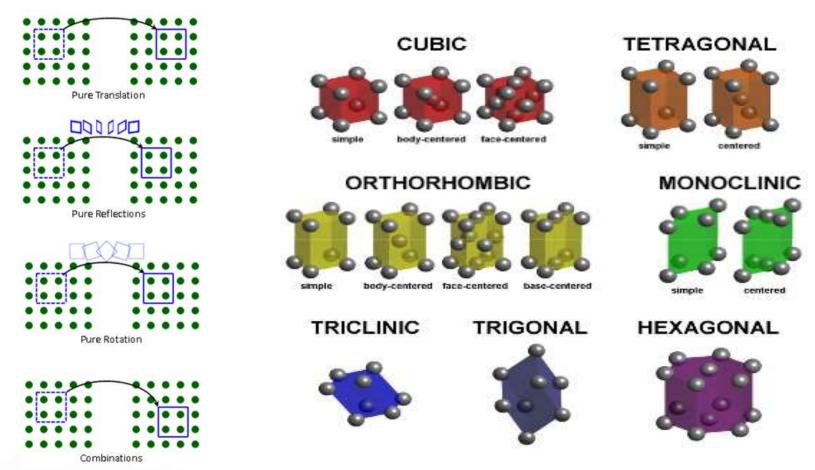
Descrevendo estruturas periódicas

- Existe um número infinito de modos em que as estruturas podem ser periódicas
- Para classificá-las é necessário generalizações
- A classificação de estruturas periódicas pode ser dividida em:
 - 230 grupos espaciais
 - 32 classes de cristais
 - 14 redes de Bravais
 - 7 sistemas cristalinos ↓
- Grupos espaciais

Conjunto de todas as possíveis combinações de operações de simetria que restaura o cristal a ele próprio

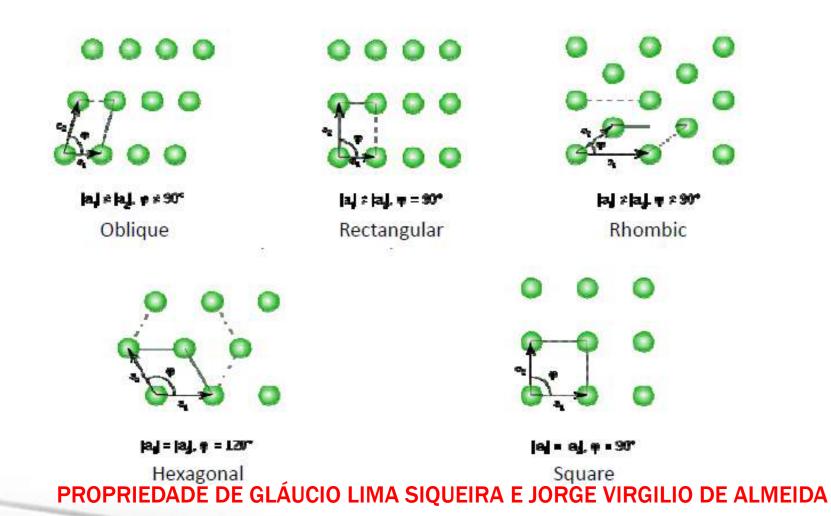
- Redes de Bravais
 - Conjunto de todos os possíveis modos de uma estrutura ser periódica se esferas idênticas forem colocadas nas pontas da rede
- Sistema cristalino
 - Conjunto de todas as Redes de Bravais que possuem a mesma forma para a célula unitária convencional

As 14 redes de Bravais e os 7 sistemas cristalinos

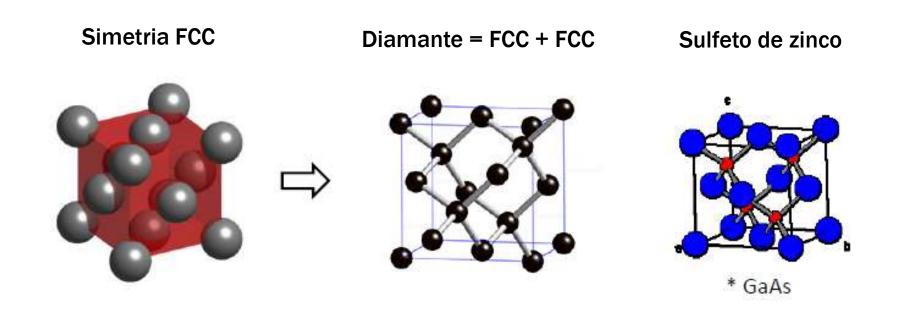


PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Redes de Bravais bi-dimensionais

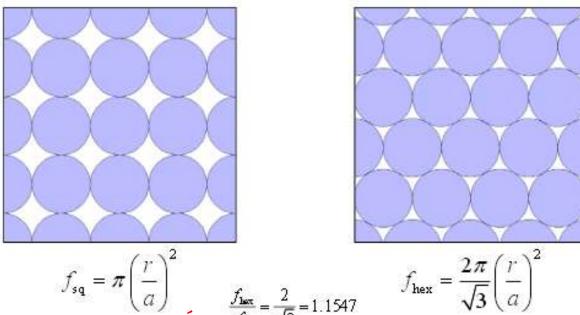


Simetrias híbridas



A simetria hexagonal tem densidade de empacotamento ótima

- A resposta eletromagnética em um arranjo hexagonal tende a acontecer em frequências mais baixas em comparação com um arranjo quadrado
- Isso implica que para um arranjo hexagonal as estruturas podem ter dimensões maiores
- Crítico em altas frequências e em fotônica onde as dimensões são mais difíceis de se realizar
- Arranjos hexagonais possuem mais ressonâncias (mais simetrias)



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Descrição matemática de estruturas periódicas

Vetores Primitivos da Rede

- Os vetores axiais primitivos definem a forma e a orientação da célula unitária e são capazes de descrever de modo inequívoco os 7 sistemas cristalinos
- Para descrever de forma inequívoca as 14 redes de Bravais, é necessário definir os vetores de translação primitivos que conectam quaisquer dois pontos da rede
- Os vetores de rede primitivos definem o conjunto com os menores vetores capazes de descrever a célula unitária da rede.

vetores axiais primitivos vetores de translação primitivos PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Axiais → **Translação**

Simple
$$\begin{bmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{d}_3 \end{bmatrix}$$
Body-Centered
$$\begin{bmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{bmatrix}$$
Face-Centered
$$\begin{bmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{bmatrix}$$
Base-Centered
$$\begin{bmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{bmatrix}$$
Trigonal
$$\begin{bmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1/3 & 1/3 \\ -1/3 & 1/3 & 1/3 \\ -1/3 & -1 & 1/3 \end{bmatrix} \begin{bmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{bmatrix}$$

PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

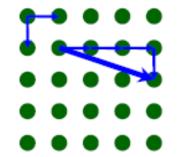
Vetores de rede não primitivos

- Quando falamos em "vetores de rede" sempre nos referimos aos vetores de translação e não aos vetores axiais
- Um vetor de translação é qualquer vetor que conecta dois pontos da rede. Eles devem ser uma combinação linear inteira dos vetores de translação primitivos

$$p = \dots, -2, -1, 0, 1, 2, \dots$$

$$\vec{t}_{pqr} = p\vec{t}_1 + |q\vec{t}_2 + r\vec{t}_3| \qquad q = \dots, -2, -1, 0, 1, 2, \dots$$

$$r = \dots, -2, -1, 0, 1, 2, \dots$$

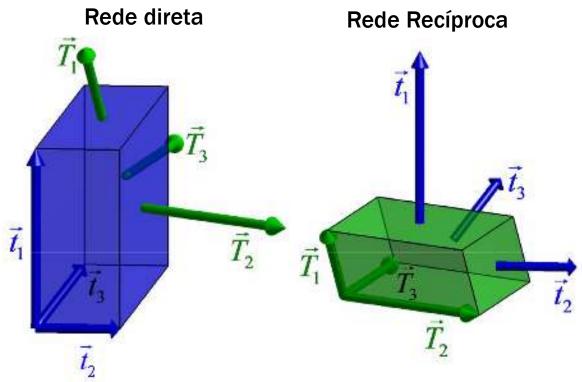


Vetor de translação primitivo

Vetor de translação não-primitivo

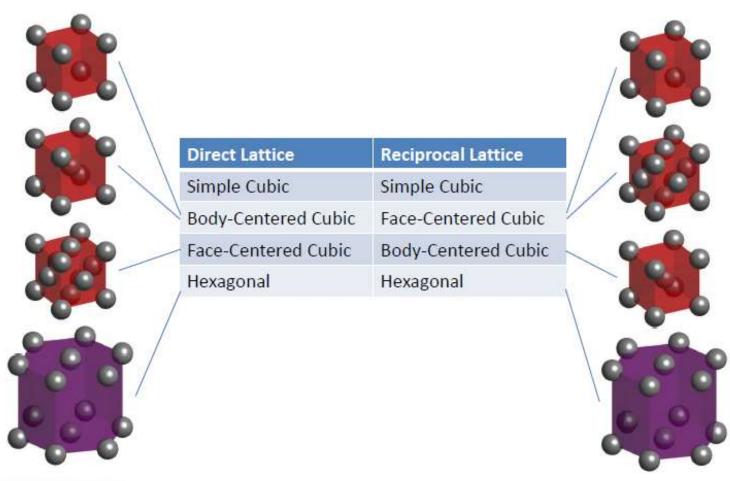
Redes direta e recíproca

Toda rede possui uma rede recíproca única!



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Redes recíprocas



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Vetores da rede recíproca para redes 3D

• Os vetores primitivos da rede recíproca podem ser calculados (e vice-versa) a partir dos vetores primitivos da rede direta:

$$\vec{T}_1 = 2\pi \frac{\vec{t}_2 \times \vec{t}_3}{\vec{t}_1 \bullet (\vec{t}_2 \times \vec{t}_3)} \qquad \vec{T}_2 = 2\pi \frac{\vec{t}_3 \times \vec{t}_1}{\vec{t}_1 \bullet (\vec{t}_2 \times \vec{t}_3)} \qquad \vec{T}_3 = 2\pi \frac{\vec{t}_1 \times \vec{t}_2}{\vec{t}_1 \bullet (\vec{t}_2 \times \vec{t}_3)}$$

$$\vec{t}_1 = 2\pi \frac{\vec{T}_2 \times \vec{T}_3}{\vec{T}_1 \bullet \left(\vec{T}_2 \times \vec{T}_3\right)} \qquad \vec{t}_2 = 2\pi \frac{\vec{T}_3 \times \vec{T}_1}{\vec{T}_1 \bullet \left(\vec{T}_2 \times \vec{T}_3\right)} \qquad \vec{t}_3 = 2\pi \frac{\vec{T}_1 \times \vec{T}_2}{\vec{T}_1 \bullet \left(\vec{T}_2 \times \vec{T}_3\right)}$$

 Todo vetor da rede recíproca pode ser determinado como uma combinação linear inteira de primitivos

$$\vec{T}_{PQR} = P\vec{T}_1 + Q\vec{T}_2 + R\vec{T}_3$$

$$P = \cdots, -2, -1, 0, 1, 2, \cdots$$
$$Q = \cdots, -2, -1, 0, 1, 2, \cdots$$
$$R = \cdots, -2, -1, 0, 1, 2, \cdots$$

Para redes 2D

$$\vec{T}_1 = \frac{2\pi}{\left|\vec{t}_1 \times \vec{t}_2\right|} \begin{bmatrix} t_{2,y} \\ -t_{2,x} \end{bmatrix} \qquad \vec{T}_2 = \frac{2\pi}{\left|\vec{t}_1 \times \vec{t}_2\right|} \begin{bmatrix} -t_{1,y} \\ t_{1,x} \end{bmatrix}$$

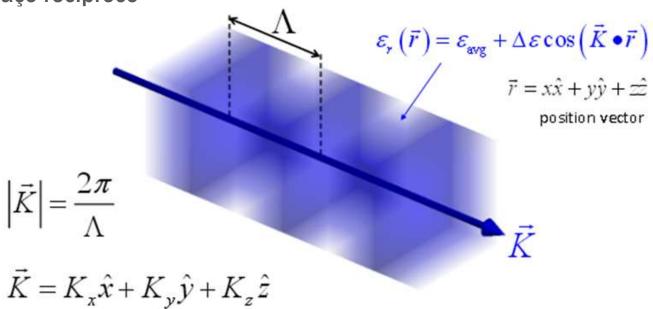
$$\vec{T}_2 = \frac{2\pi}{\left|\vec{t}_1 \times \vec{t}_2\right|} \begin{bmatrix} -t_{1,y} \\ t_{1,x} \end{bmatrix}$$

$$egin{aligned} ec{m{t}}_1 &= rac{2\pi}{\left|ec{T}_1 imes ec{T}_2
ight|} egin{bmatrix} T_{2,y} \ -T_{2,x} \end{bmatrix} \end{aligned} \qquad egin{bmatrix} ec{m{t}}_2 &= rac{2\pi}{\left|ec{T}_1 imes ec{T}_2
ight|} egin{bmatrix} -T_{1,y} \ T_{1,x} \end{bmatrix}$$

$$\vec{t}_2 = \frac{2\pi}{\left|\vec{T}_1 \times \vec{T}_2\right|} \begin{bmatrix} -T_{1,y} \\ T_{1,x} \end{bmatrix}$$

Vetor de rede

• O vetor de rede (grating vector) é definido no sentido dos planos de índice de refração constante, sua magnitude é 2π dividido pelo parâmetro de periodicidade Λ , que é a distância entre os planos do espaço recíproco



Devido a essa "equivalência" entre os vetores da rede recíproca e o vetor de onda, as estruturas periódicas são sempre analisadas no seu espaço recíproco!

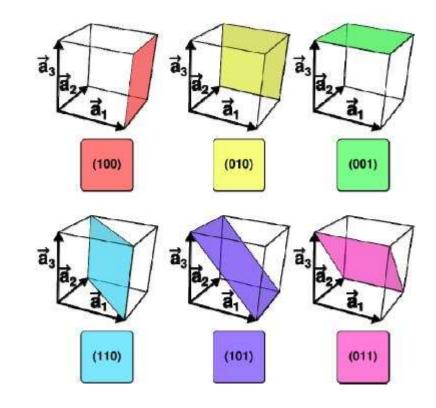
$$\vec{T}_a \rightarrow \vec{K}_a = \frac{2\pi}{\Lambda_a}$$

Índices de Miller

- Os índices de Miller identificam planos repetitivos dentro da estrutura periódico como de um cristal
- Lembrando da definição de um vetor da rede recíproca:

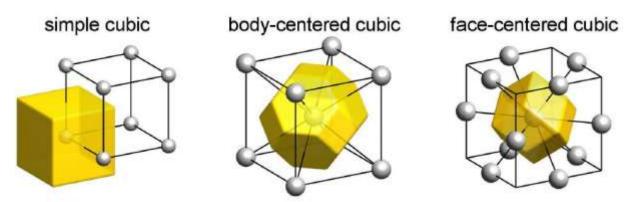
$$\vec{T}_{PQR} = P\vec{T}_1 + Q\vec{T}_2 + R\vec{T}_3$$

• P, Q e R são chamados índices de Miller dos planos descritos pelo vetor da rede recíproca \overrightarrow{T}_{PQR} : $\langle PQR \rangle$



Células unitárias primitivas

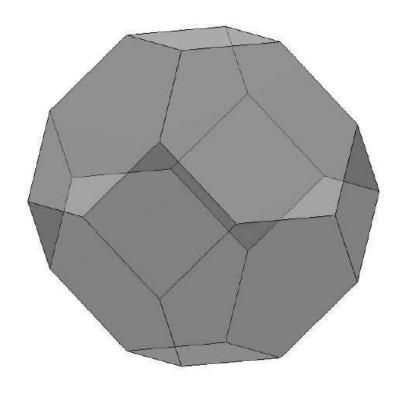
- Células unitárias primitivas são o menor volume do espaço que reproduz a rede completamente, sem vazios ou superposições
- Pelo método Wigner-Seitz, ele é definido como o volume de espaço ao redor de um único "átomo" da rede (pontos) cujos pontos estão mais próximos deste átomo do que de qualquer outro



 Vemos acima a relação entre as redes unitárias convencionais (frames) e as células de Wigner-Seitz (volumes) para as redes cúbicas

Zonas de Brillouin

Zonas de Brillouin são as células unitárias primitivas da rede recíproca



Zona de Brillouin da rede FCC

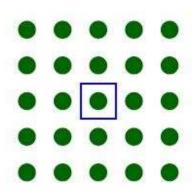
Esta é a mais "esférica" das zonas de Brillouin periódicas e por isto a FCC é dita ter a maior simetria das redes de Bravais

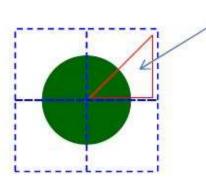
Dentre as redes FCC, a do diamante tem a mais alta simetria

Octaedro truncado com 14 faces.

Zona de Brillouin irredutível

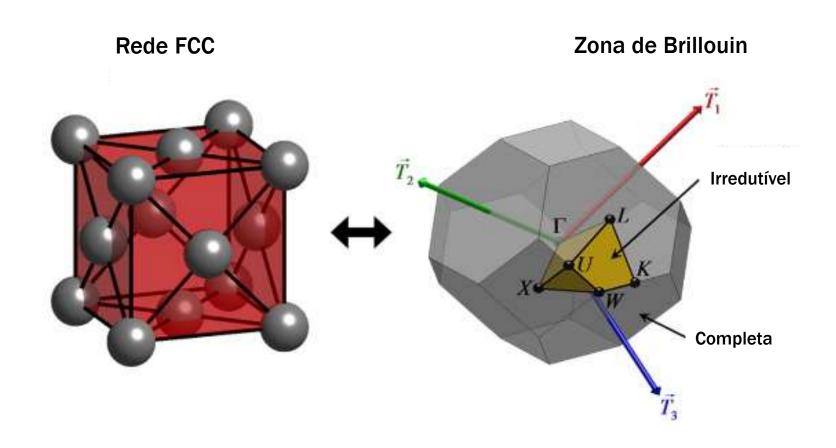
- Se o campo for conhecido em todos os pontos da célula unitária então ele será conhecido em toda a rede, pois o campo assume a mesma simetria da rede apenas se repetindo
- Como a rede recíproca define univocamente a rede direta, conhecendo a solução da equação de onda dentro da célula unitária recíproca, conheceremos o campo em toda a rede recíproca
- Muitas vezes ainda existe simetria para ser explorada e o volume de espaço que descreve completamente a onda eletromagnética pode ser menor do que a célula unitária. Esta região é chamada Zona de Brillouin Irredutível



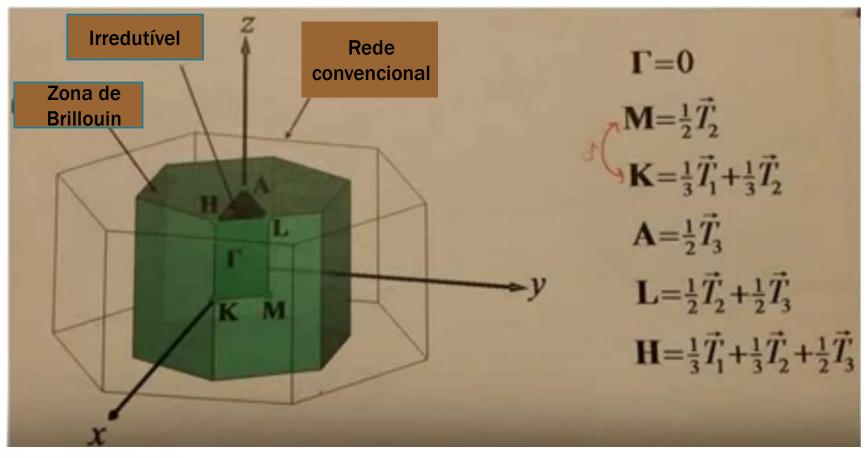


Devido à simetria deste exemplo, o campo em qualquer ponto da rede pode ser mapeado a um ponto equivalente no triângulo.

Exemplo 1



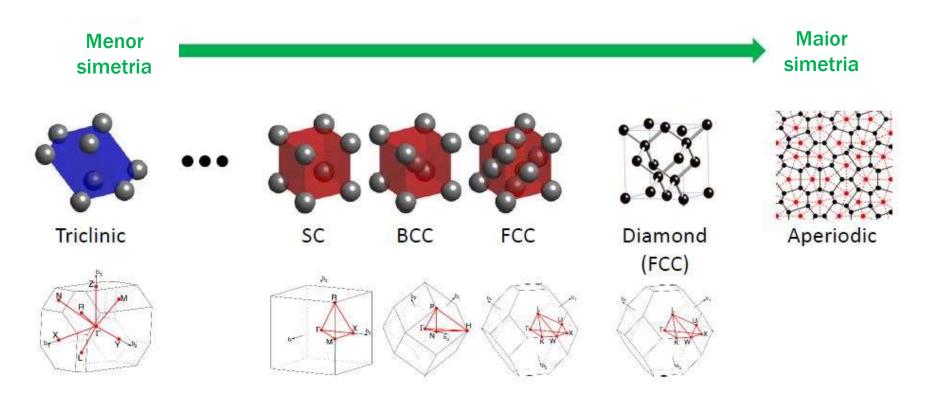
Exemplo 2



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Graus de simetria

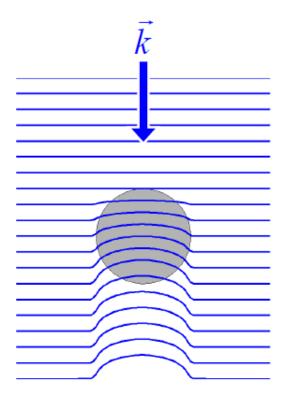
• O grau de simetria se refere ao quão "esférica" é a Zona de Brillouin



Ondas eletromagnéticas em estruturas periódicas

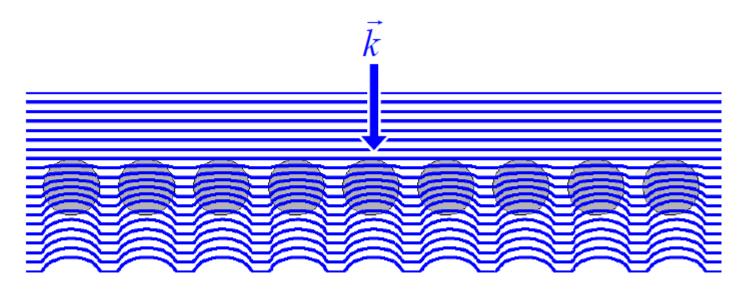
Campos são perturbados pelos objetos

• Uma porção da frente de onda é atrasada após passar através do objeto dielétrico



Campos em estruturas periódicas

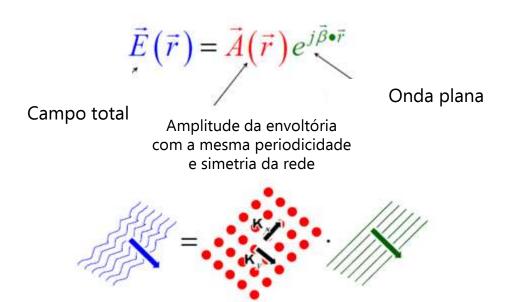
Ondas em estruturas periódicas adquirem a mesma periodicidade da estrutura

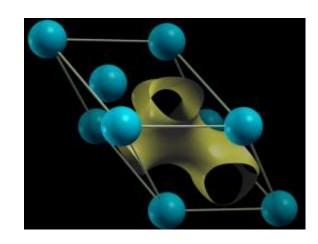


PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Teorema de Bloch

- Uma onda EM propagando-se em um meio periódico podem ser descrita como ondas de Bloch dentro das zonas de Brillouin
- · Teorema de Bloch:
 - O campo da onda é dada por uma base de autoenergias de Bloch





Superfície equipotencial de uma onda de Bloch

Exemplos de ondas numa rede periódica

Onda normalmente incidente numa estrutura periódica

Onda incidente à 45 graus na mesma estrutura periódica

PROPRIEDADE DE GLAUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Descrição matemática da periodicidade

 Uma estrutura é periódica se suas propriedades materiais se repetem. Dada a rede de vetores, a periodicidade é expressa como:

$$\varepsilon(\vec{r} + \vec{t}_{pqr}) = \varepsilon(\vec{r}) \qquad \vec{t}_{pqr} = p\vec{t}_1 + q\vec{t}_2 + r\vec{t}_3$$

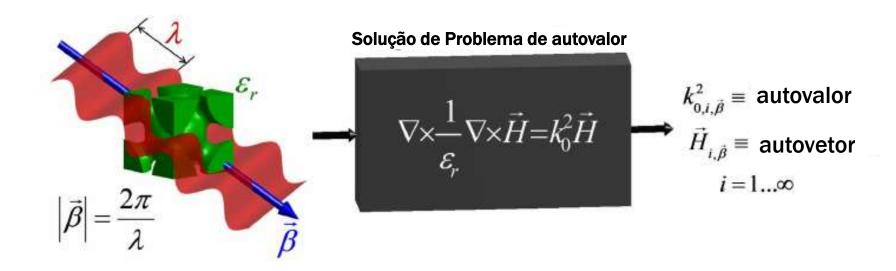
 Lembre-se que é a amplitude da onda de Block que tem a mesma periodicidade da estrutura em que a onda está. Assim:

$$A(\vec{r} + \vec{t}_{pqr}) = A(\vec{r}) \qquad \vec{t}_{pqr} = p\vec{t}_1 + q\vec{t}_2 + r\vec{t}_3$$

Bandas eletromagnéticas

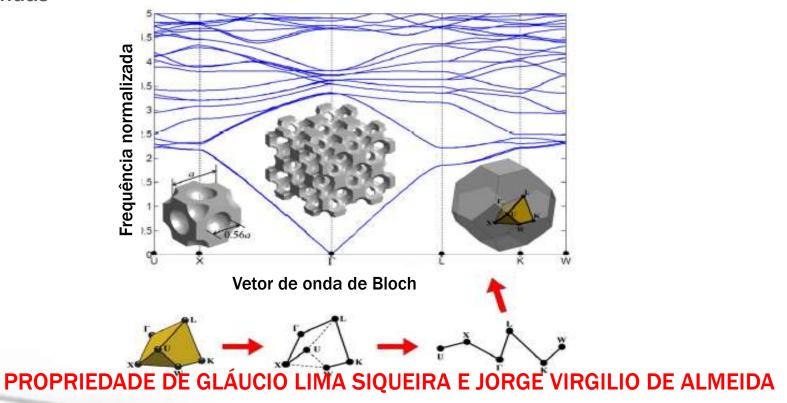
Diagramas de banda (I)

• Diagramas de banda são um meio compacto mas incompleto de caracterizar as propriedades eletromagnéticas de uma estrutura periódica. Ela é essencialmente um mapa das frequências dos auto-modos em função do vetor de onda de Bloch $\vec{\beta}$



Diagramas de banda (II)

• Para construir um diagrama de banda, consideramos pequenos deslocamentos no perímetro da Zona de Brillouin Irredutível (IBZ) e calculamos os autovalores em cada passo. Quando fazemos o gráfico de todos os autovalores como uma função de β , os pontos se alinham para formar "bandas" contínuas



Lendo diagrama de banda (I)

 Pelo menos cinco propriedades eletromagnéticas podem ser estimadas de um diagrama de banda:

1. Espaço de banda

- Ausência de qualquer banda dentro de uma faixa de frequências indica ausência de banda
- Um ESPAÇO DE BANDA COMPLETO é aquele que existe em todos os possíveis vetores de onda de Bloch
- 2. Espectro de Transmissão/Reflexão
 - Espaço de Banda leva à supressão de transmisão e aumento da reflexão
- 3. Velocidade de fase
 - Inclinação da reta que liga Γ a qualquer ponto na banda \longrightarrow $n_{p,efetivo}$
- 4. Velocidade de grupo
 - Inclinação da banda no ponto de interesse
 $m_{g,efetivo}$
- 5. Dispersão
 - Toda vez que a banda desvia de uma linha reta existe dispersão

Lendo diagrama de banda (II)

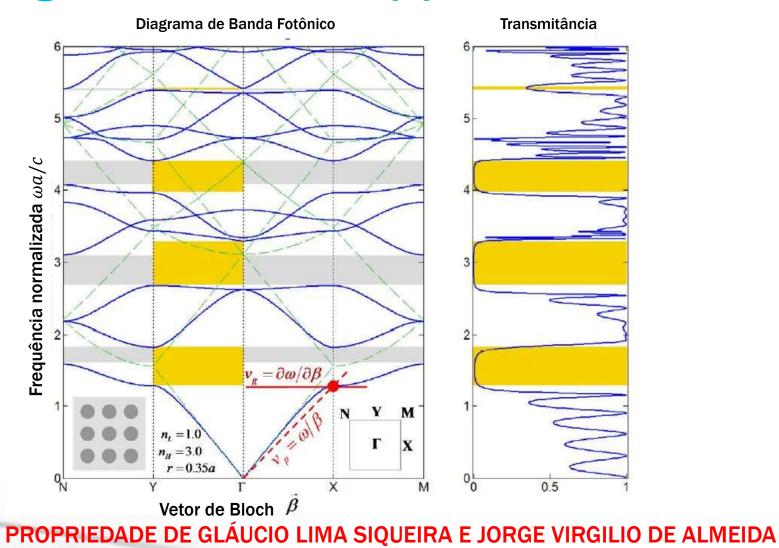
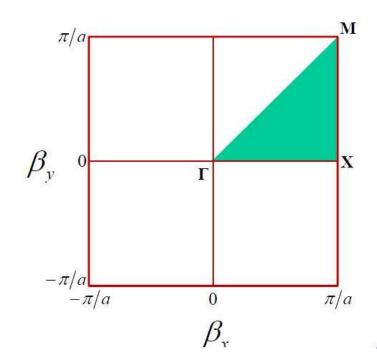
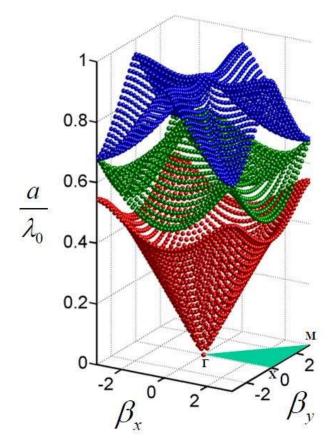


Diagrama de banda completo

· Zona de Brillouin completa

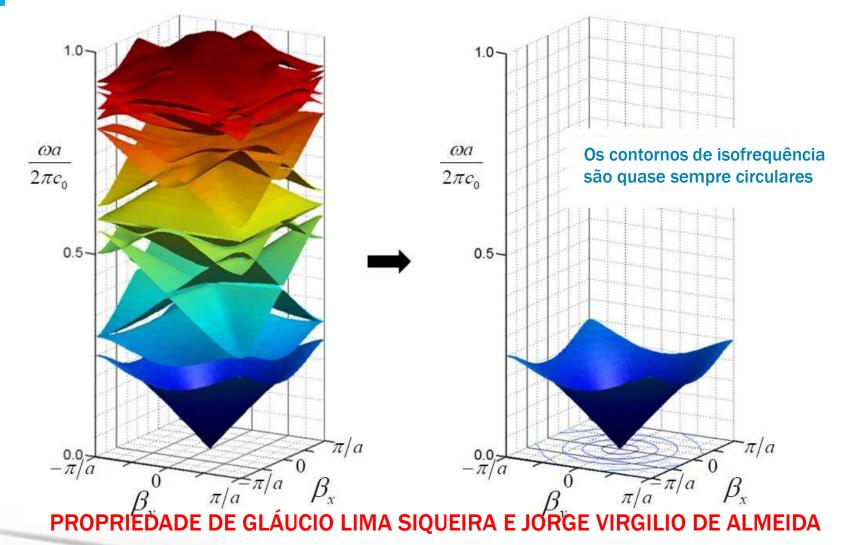




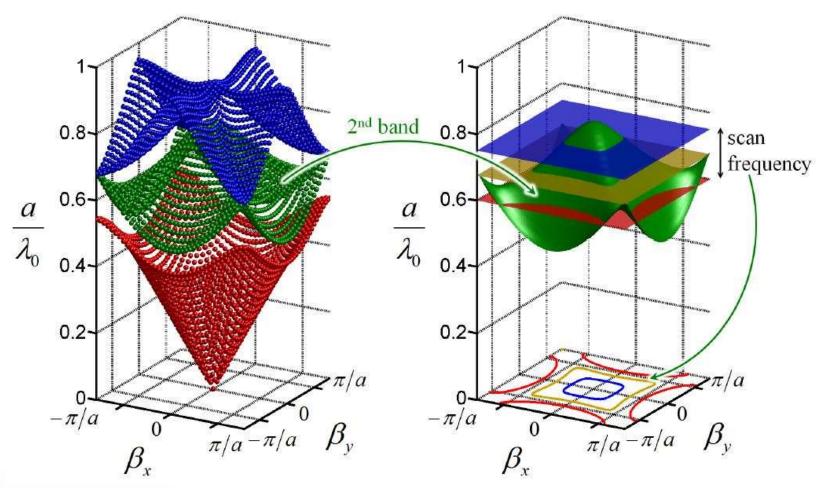
Existe um conjunto infinito de autofrequências associadas com cada ponto da zona de Brillouin. Eles formam "superfícies" como mostrado acima

Contornos de Isofrequência (Índices Elipsoidais para Estruturas Periódicas)

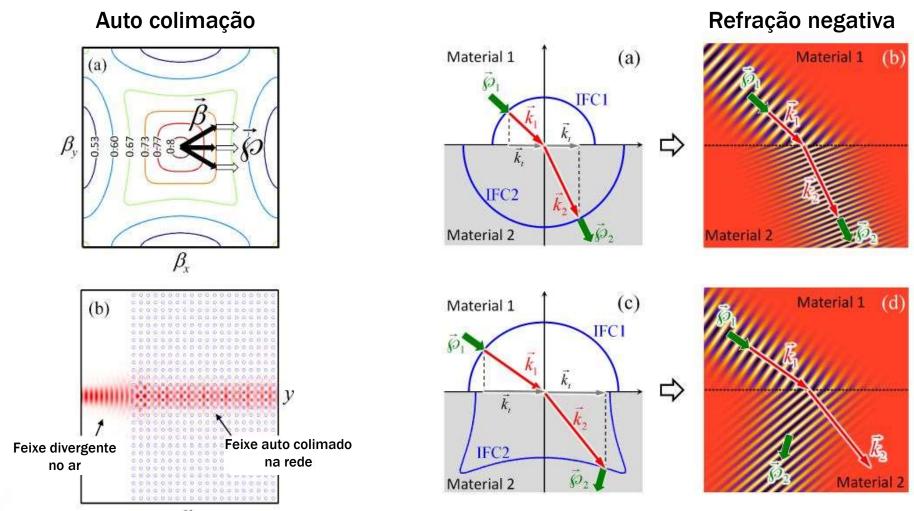
Contornos de Isofrequência para Bandas de Primeira Ordem



Contornos de Isofrequência para Bandas de Segunda Ordem



Exemplos de Aplicação



PROPRIEDADE DE GLÁUCIO LIMA SIQUEIRA E JORGE VIRGILIO DE ALMEIDA

Obrigado pela atenção! Até a próxima aula...